Площадь поверхности четырехугольной пирамиды формула. Площадь боковой поверхности пирамиды

14.07.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Перед изучением вопросов о данной геометрической фигуре и её свойствах, следует разобраться в некоторых терминах. Когда человек слышит о пирамиде, ему представляются большущие постройки в Египте. Так выглядят самые простые из них. Но они бывают разных видов и форм, а значит и формула вычисления для геометрических фигур будет разной.

Виды фигуры

Пирамида – геометрическая фигура , обозначающая и представляющая собой несколько граней. По сути – это тот же многогранник, в основании которого лежит многоугольник, а по бокам расположены треугольники, соединяющиеся в одной точке – вершине. Фигура бывает двух основных видов:

  • правильная;
  • усечённая.

В первом случае, в основании лежит правильный многоугольник. Тут все боковые поверхности равны между собой и сама фигура порадует глаз перфекциониста.

Во втором случае, оснований два - большое в самом низу и малое между вершиной, повторяющее форму основного. Иными словами – усечённая пирамида представляет собой многогранник с сечением, образованным параллельно основанию.

Термины и обозначения

Основные термины:

  • Правильный (равносторонний) треугольник – фигура с тремя одинаковыми углами и равными сторонами. В этом случае все углы имеют 60 градусов. Фигура является простейшей из правильных многогранников. Если эта фигура лежит в основании, то такой многогранник будет называться правильной треугольной. Если в основании лежит квадрат, пирамида будет называться правильной четырёхугольной пирамидой.
  • Вершина – самая верхняя точка, где сходятся грани. Высота вершины образуется прямой линией, исходящей от вершины к основанию пирамиды.
  • Грань – одна из плоскостей многоугольника. Она может быть в виде треугольника в случае с треугольной пирамидой либо в виде трапеции для усечённой пирамиды.
  • Сечение – плоская фигура, образующаяся в результате рассечения. Не стоит путать с разрезом, так как разрез показывает и то, что находится за сечением.
  • Апофема – отрезок, проведённый из вершины пирамиды к её основанию. Он также является высотой той грани, где находится вторая точка высоты. Данное определение справедливо лишь по отношению к правильному многограннику. К примеру – если это не усечённая пирамида, то грань будет представлять собой треугольник. В данном случае высота этого треугольника и станет апофемой.

Формулы площади

Находить площадь боковой поверхности пирамиды любого типа можно несколькими способами. Если фигура не симметричная и представляет собой многоугольник с разными сторонами, то в данном случае легче вычислить общую площадь поверхности через совокупность всех поверхностей. Иными словами – надо посчитать площадь каждой грани и сложить их вместе.

В зависимости от того, какие параметры известны, могут потребоваться формулы вычисления квадрата, трапеции, произвольного четырёхугольника и т.д. Сами формулы в разных случаях тоже будут иметь отличия.

В случае с правильной фигурой находить площадь намного проще. Достаточно знать всего несколько ключевых параметров. В большинстве случаев требуются вычисления именно для таких фигур. Поэтому далее будут приведены соответствующие формулы. В противном случае пришлось бы расписать всё на несколько страниц, что только запутает и собьёт с толку.

Основная формула для вычисления площади боковой поверхности правильной пирамиды будет иметь следующий вид:

S=½ Pa (P – периметр основания, а – апофема)

Рассмотрим один из примеров. Многогранник имеет основание с отрезками A1, А2, А3, А4, А5, и все они равны 10 см. Апофема пусть будет равна 5 см. Для начала надо найти периметр. Так как все пять граней основания одинаковые, можно находить так: Р=5*10=50 см. Далее применяем основную формулу: S =½*50*5=125 см в квадрате.

Площадь боковой поверхности правильной треугольной пирамиды вычислить легче всего. Формула имеет следующий вид:

S =½* ab *3, где а – апофема, b – грань основания. Множитель тройки здесь означает количество граней основания, а первая часть – площадь боковой поверхности. Рассмотрим пример. Дана фигура с апофемой 5 см и гранью основания 8 см. Вычисляем: S =1/2*5*8*3=60 см в квадрате.

Площадь боковой поверхности усечённой пирамиды вычислять немного сложнее. Формула выглядит так: S =1/2*(p _01+ p _02)*a , где р_01 и р_02 являются периметрами оснований, а – апофема. Рассмотрим пример. Допустим, для четырёхугольной фигуры даны размеры сторон оснований 3 и 6 см, апофема равна 4 см.

Тут для начала следует найти периметры оснований: р_01 =3*4=12 см; р_02=6*4=24 см. Осталось подставить значения в основную формулу и получим: S =1/2*(12+24)*4=0,5*36*4=72 см в квадрате.

Таким образом, можно найти площадь боковой поверхности правильной пирамиды любой сложности. Следует быть внимательным и не путать эти вычисления с полной площадью всего многогранника. А если это всё же понадобится сделать – достаточно вычислить площадь самого большого основания многогранника и прибавить её к площади боковой поверхности многогранника.

Видео

Закрепить информацию о том, как найти площадь боковой поверхности разных пирамид, вам поможет это видео.

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности, то просто к боковой прибавляем площадь основания.

Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство:

Если сторона основания а, число сторон n, то боковая поверхность пирамиды равна:

a l n/2 =a n l/2=pl/2

где l - апофема, а p - периметр основания пирамиды. Теорема доказана.

Эта формула читается так:

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

Площадь полной поверхности пирамиды вычисляется по формуле:

S полн = S бок + S осн

Если пирамида неправильная, то ее боковая поверхность будет равна сумме площадей ее боковых граней.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания на высоту.

Доказательство. Будем исходить из треугольной призмы. Проведем плоскость через вершину A" верхнего основания призмы и противолежащее ребро ВС нижнего основания. Эта плоскость отсечет от призмы треугольную пирамиду A"АВС. Оставшуюся часть призмы разложим на жва тела, проведя плоскость через диагонали A"С и B"C боковых граней. Полученные два тела также являются пирамидами. Считая треугольник A"B"C" основанием одной из них, а С её вершиной, увидим, что её основание и высота такие же, как и у первой отсеченной нами пирамиды, поэтому пирамиды A"АВС и CA"B"C" равновелики. Кроме того, обе новые пирамиды CA"B"C" и A"B"ВС также равновелики - это станет ясным, если примем за их основания треугольники ВСB" и B"CC". Пирамиды CA"B"C" и A"B"ВС имеют общую вершину A", а их основания расположены в одной плоскости и равны, следовательно, пирамиды равновелики. Итак, призма разложена на три равновеликие между собой пирамиды; объем каждой из них равен одной трети объема призмы. Так как форма основания несущественна, то, вообще, объем n-угольной пирамиды равен одной трети объема призмы с той же высотой и тем же (или равновеликим) основанием. Вспоминая формулу, выражающую объем призмы, V=Sh, получим окончательный результат: V=1/3Sh

Типичными геометрическими задачами на плоскости и в трехмерном пространстве являются проблемы определения площадей поверхностей разных фигур. В данной статье приведем формулу площади боковой поверхности правильной пирамиды четырехугольной.

Что собой представляет пирамида?

Приведем строгое геометрическое определение пирамиды. Предположим, что имеется некоторый многоугольник с n сторонами и с n углами. Выберем произвольную точку пространства, которая не будет находиться в плоскости указанного n-угольника, и соединим ее с каждой вершиной многоугольника. Мы получим фигуру, имеющую некоторый объем, которая называется n-угольной пирамидой. Для примера покажем на рисунке ниже, как выглядит пятиугольная пирамида.

Два важных элемента любой пирамиды - это ее основание (n-угольник) и вершина. Эти элементы соединены друг с другом n треугольниками, которые в общем случае не равны друг другу. Перпендикуляр, опущенный из вершины к основанию, называется высотой фигуры. Если он пересекает основание в геометрическом центре (совпадает с центром масс многоугольника), то такую пирамиду называют прямой. Если помимо этого условия основание является правильным многоугольником, то и вся пирамида называется правильной. Рисунок ниже показывает, как выглядят правильные пирамиды с треугольным, четырехугольным, пятиугольным и шестиугольным основаниями.

Поверхность пирамиды

Прежде чем переходить к вопросу о площади боковой поверхности правильной пирамиды четырехугольной, следует подробнее остановиться на понятии самой поверхности.

Как было сказано выше и показано на рисунках, любая пирамида образована набором граней или сторон. Одна сторона является основанием, и n сторон представляют собой треугольники. Поверхность всей фигуры - это сумма площадей каждой ее стороны.

Поверхность удобно изучать на примере развертки фигуры. Развертка для правильной четырехугольной пирамиды приведена на рисунки ниже.

Видим, что площадь ее поверхности равна сумме четырех площадей одинаковых равнобедренных треугольников и площади квадрата.

Общую площадь всех треугольников, которые образуют боковые стороны фигуры, принято называть площадью боковой поверхности. Далее покажем, как ее рассчитать для четырехугольной пирамиды правильной.

Площадь боковой поверхности четырехугольной правильной пирамиды

Чтобы вычислить площадь боковой поверхности указанной фигуры, снова обратимся к приведенной выше развертке. Предположим, что нам известна сторона квадратного основания. Обозначим ее символом a. Видно, что каждый из четырех одинаковых треугольников, имеет основание длиной a. Чтобы вычислить их суммарную площадь, необходимо знать эту величину для одного треугольника. Из курса геометрии известно, что треугольника площадь S t равна произведению основания на высоту, которое следует поделить пополам. То есть:

Где h b - высота равнобедренного треугольника, проведенная к основанию a. Для пирамиды эта высота является апотемой. Теперь остается умножить полученное выражение на 4, чтобы получить площадь S b поверхности боковой для рассматриваемой пирамиды:

S b = 4*S t = 2*h b *a.

Эта формула содержит два параметра: апотему и сторону основания. Если последняя в большинстве условий задач известна, то первую приходится вычислять, зная другие величины. Приведем формулы для расчета апотемы h b для двух случаев:

  • когда известна длина бокового ребра;
  • когда известна высота пирамиды.

Если обозначить длину ребра бокового (сторона равнобедренного треугольника) символом L, тогда апотема h b определиться по формуле:

h b = √(L 2 - a 2 /4).

Это выражения является результатом применения теоремы Пифагора для треугольника боковой поверхности.

Если известна высота h пирамиды, тогда апотему h b можно рассчитать так:

h b = √(h 2 + a 2 /4).

Получить это выражение также не сложно, если рассмотреть внутри пирамиды прямоугольный треугольник, образованный катетами h и a/2 и гипотенузой h b .

Покажем, как применять эти формулы, решив две интересные задачи.

Задача с известной площадью поверхности

Известно, что площадь боковой поверхности четырехугольной равна 108 см 2 . Необходимо вычислить значение длины ее апотемы h b , если высота пирамиды равна 7 см.

Запишем формулу площади S b поверхности боковой через высоту. Имеем:

S b = 2*√(h 2 + a 2 /4) *a.

Здесь мы просто подставили соответствующую формулу апотемы в выражение для S b . Возведем обе части равенства в квадрат:

S b 2 = 4*a 2 *h 2 + a 4 .

Чтобы найти значение a, сделаем замену переменных:

t 2 + 4*h 2 *t - S b 2 = 0.

Подставляем теперь известные значения и решаем квадратное уравнение:

t 2 + 196*t - 11664 = 0.

Мы выписали только положительный корень этого уравнения. Тогда стороны основания пирамиды будет равна:

a = √t = √47,8355 ≈ 6,916 см.

Чтобы получить длину апотемы, достаточно воспользоваться формулой:

h b = √(h 2 + a 2 /4) = √(7 2 + 6,916 2 /4) ≈ 7,808 см.

Боковая поверхность пирамиды Хеопса

Определим значение боковой для самой большой египетской пирамиды. Известно, что в ее основании лежит квадрат с длиной стороны 230,363 метра. Высота сооружения изначально составляла 146,5 метра. Подставим эти цифры в соответствующую формулу для S b , получим:

S b = 2*√(h 2 + a 2 /4) *a = 2*√(146,5 2 +230,363 2 /4)*230,363 ≈ 85860 м 2 .

Найденное значение немного больше площади 17 футбольных полей.

Правильная пирамида – это пирамида, основанием которой является правильный многоугольник, вершина пирамиды проецируется в центр этого многоугольника.

Боковая грань такой пирамиды это равнобедренный треугольник. Высота этого треугольника, проведенная из вершины правильной пирамиды, называется апофемой, SF – апофема:

Требуется найти какой-либо элемент, площадь боковой поверхности, объём, высоту. Разумеется, необходимо знать теорему Пифагора, формулу площади боковой поверхности пирамиды, формулу для нахождения объёма пирамиды.

В статье « Общий обзор. Формулы стереометрии! » представлены все формулы, которые нужны для решения. Итак, задачи:

SABCD точка O - центр основания, S вершина, SO = 51, AC = 136. Найдите боковое ребро SC .

В данном случае в основании лежит квадрат. Это означает, что диагонали AC и BD равны, они пересекаются и точкой пересечения делятся пополам. Отметим, что в правильной пирамиде высота опущенная из её вершины проходит через центр основания пирамиды. Таким образом, SO является высотой, а треугольник SOC прямоугольный. Тогда по теореме Пифагора:

Как извлекать корень из большого числа .

Ответ: 85

Решите самостоятельно:

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SC = 5, AC = 6. Найдите длину отрезка SO .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, SC = 5. Найдите длину отрезка AC .

SABC R - середина ребра BC , S - вершина. Известно, что AB = 7, а SR = 16. Найдите площадь боковой поверхности.

Площадь боковой поверхности правильной треугольной пирамиды равна половине произведения периметра основания на апофему (апофема это высота боковой грани правильной пирамиды, проведённая из её вершины):

Или можно сказать так: площадь боковой поверхности пирамиды равна сумме площадей трёх боковых граней. Боковыми гранями в правильной треугольной пирамиде являются равные по площади треугольники. В данном случае:

Ответ: 168

Решите самостоятельно:

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SR .

В правильной треугольной пирамиде SABC L - середина ребра BC , S - вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB .

В правильной треугольной пирамиде SABC M . Площадь треугольника ABC равна 25, объем пирамиды равен 100. Найдите длину отрезка MS .

Основание пирамиды - равносторонний треугольник . Поэтому M является центром основания, а MS - высотой правильной пирамиды SABC . Объем пирамиды SABC равен:

Ответ: 12

Решите самостоятельно:

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Площадь треугольника ABC равна 3, объем пирамиды равен 1. Найдите длину отрезка MS .

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Объем пирамиды равен 1, MS = 1. Найдите площадь треугольника ABC .

В заданиях ЕГЭ, как правило, рассматриваются правильные треугольные, четырёхугольные и шестиугольные пирамиды.

Формула площади всей поверхности проста - требуется найти сумму площади основания пирамиды и площади её боковой поверхности:

Рассмотрим задачи:

Стороны основания правильной четырехугольной пирамиды равны 72, боковые ребра равны 164. Найдите площадь поверхности этой пирамиды.

Площадь поверхности пирамиды равна сумме площадей боковой поверхности и основания:

*Боковая поверхность состоит из четырёх равных по площади треугольников. Основание пирамиды это квадрат.

Площадь боковой стороны пирамиды можем вычислить воспользовавшись формулой Герона :

Таким образом, площадь поверхности пирамиды равна:

Ответ: 28224

Стороны основания правильной шестиугольной пирамиды равны 22, боковые ребра равны 61. Найдите площадь боковой поверхности этой пирамиды.

Основанием правильной шестиугольной пирамиды является правильный шестиугольник.

Площадь боковой поверхности данной пирамиды состоит из шести площадей равных треугольников с сторонами 61,61 и 22:

Найдём площадь треугольника, воспользуемся формулой Герона:

Таким образом, площадь боковой поверхности равна:

Ответ: 3240

*В представленных выше задачах площадь боковой грани можно было найти используя другую формулу треугольника, но для этого нужно вычислить апофему.

27155. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.

Для того, чтобы найти площадь поверхности пирамиды нам необходимо знать площадь основания и площадь боковой поверхности:

Площадь основания равна 36, так как это квадрат со стороной 6.

Боковая поверхность состоит из четырёх граней, которые являются равными треугольниками. Для того, чтобы найти площадь такого треугольника требуется знать его основание и высоту (апофему):

*Площадь треугольника равна половине произведения основания и высоты проведённой к этому основанию.

Основание известно, оно равно шести. Найдём высоту. Рассмотрим прямоугольный треугольник (он выделен жёлтым):

27070. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

Существуют ещё формулы площади боковой поверхности правильной пирамиды. В правильной пирамиде основание является ортогональной проекцией боковой поверхности, поэтому:

где φ - двугранный угол при основании

Отсюда площадь полной поверхности правильной пирамиды может быть найдена по формуле:

Еще одна формула боковой поверхности правильной пирамиды:

P - периметр основания, l - апофема пирамиды

Треугольной пирамидой называется многогранник, в основании которого лежит правильный треугольник.

В такой пирамиде грани основания и ребра боковых сторон равны между собой. Соответственно площадь боковых граней находится из суммы площадей трех одинаковых треугольников. Найти площадь боковой поверхности правильной пирамиды можно по формуле . А можно произвести расчет в несколько раз быстрее. Для этого необходимо применить формулу площади боковой поверхности треугольной пирамиды:

где p – периметр основания, у которого все стороны равны b, a – апофема, опущенная из вершины к этому основанию. Рассмотрим пример расчета площади треугольной пирамиды.

Задача: Пусть дана правильная пирамида. Сторона треугольника, лежащего в основании равна b = 4 см. Апофема пирамиды равна a = 7 см. Найдите площадь боковой поверхности пирамиды.
Так как по условиям задачи мы знаем длины всех необходимых элементов, найдем периметр. Помним, что в правильном треугольнике все стороны равны, а, следовательно, периметр рассчитывается по формуле:

Подставим данные и найдем значение:

Теперь, зная периметр, можем рассчитывать площадь боковой поверхности:

Чтобы применить формулу площади треугольной пирамиды для вычисления полного значения, необходимо найти площадь основания многогранника. Для этого используется формула :

Формула площади основания треугольной пирамиды может быть и другой. Допускается применение любого расчета параметров для заданной фигуры, но чаще всего это не требуется. Рассмотрим пример расчета площади основания треугольной пирамиды.

Задача: В правильной пирамиде сторона лежащего в основании треугольника равняется a = 6 см. Рассчитайте площадь основания.
Для вычисления нам требуется только длина стороны правильного треугольника, располагающегося в основании пирамиды. Подставим данные в формулу:

Довольно часто требуется найти полную площадь многогранника. Для этого потребуется сложить площадь боковой поверхности и основания.

Рассмотрим пример расчета площади треугольной пирамиды.

Задача: пусть дана правильная треугольная пирамида. Сторона основания равна b = 4 см, апофема a = 6 см. Найдите полную площадь пирамиды.
Для начала найдем площадь боковой поверхности по уже известной формуле. Рассчитаем периметр:

Подставляем данные в формулу:
Теперь найдем площадь основания:
Зная площадь основания и боковой поверхности, найдем полную площадь пирамиды:

При расчете площади правильной пирамиды стоит не забывать о том, что в основании лежит правильный треугольник и многие элементы этого многогранника равны между собой.

Последние материалы сайта